After ejaculation, mammalian sperm undergo a series of molecular events conducive to the acquisition of fertilizing competence. These events are collectively known as capacitation and involve acrosomal responsiveness and a vigorous sperm motility called hyperactivation. When mimicked in the laboratory, capacitating bovine sperm medium contains bicarbonate, calcium, albumin and heparin, among other components. In this study, we aimed at establishing a new capacitation protocol for bovine sperm, using calcium ionophore. Similar to our findings using mouse sperm, bovine sperm treated with Ca2+ ionophore A23187 were quickly immobilized. However, these sperm initiated capacitation after ionophore removal in fresh medium without heparin, and independent of the Protein Kinase A. When A23187-treated sperm were used on in vitro fertilization (IVF) procedures without heparin, eggs showed cleavage rates similar to standardized IVF protocols using heparin containg synthetic oviduct fluid (IVF-SOF). However, when A23187 pre-treated sperm were further used for inseminating eggs in complete IVF-SOF-heparin, a significantly higher percentage of embryo development was observed, suggesting a synergism between two different signaling pathways during bovine sperm capacitation. These results have the potential to improve current protocols for bovine IVF that could also be applied in other species of commercial interest.
Keywords: Bovine; Calcium ionophore; Embryo production; In vitro fertilization; Sperm capacitation.
Copyright © 2024 Elsevier Inc. All rights reserved.