Clonal background and routes of plasmid transmission underlie antimicrobial resistance features of bloodstream Klebsiella pneumoniae

Nat Commun. 2024 Aug 14;15(1):6969. doi: 10.1038/s41467-024-51374-x.

Abstract

Bloodstream infections caused by the opportunistic pathogen Klebsiella pneumoniae are associated with adverse health complications and high mortality rates. Antimicrobial resistance (AMR) limits available treatment options, thus exacerbating its public health and clinical burden. Here, we aim to elucidate the population structure of K. pneumoniae in bloodstream infections from a single medical center and the drivers that facilitate the dissemination of AMR. Analysis of 136 short-read genome sequences complemented with 12 long-read sequences shows the population consisting of 94 sequence types (STs) and 99 clonal groups, including globally distributed multidrug resistant and hypervirulent clones. In vitro antimicrobial susceptibility testing and in silico identification of AMR determinants reveal high concordance (90.44-100%) for aminoglycosides, beta-lactams, carbapenems, cephalosporins, quinolones, and sulfonamides. IncF plasmids mediate the clonal (within the same lineage) and horizontal (between lineages) transmission of the extended-spectrum beta-lactamase gene blaCTX-M-15. Nearly identical plasmids are recovered from isolates over a span of two years indicating long-term persistence. The genetic determinants for hypervirulence are carried on plasmids exhibiting genomic rearrangement, loss, and/or truncation. Our findings highlight the importance of considering both the genetic background of host strains and the routes of plasmid transmission in understanding the spread of AMR in bloodstream infections.

MeSH terms

  • Anti-Bacterial Agents* / pharmacology
  • Bacteremia / microbiology
  • Bacteremia / transmission
  • Carbapenems / pharmacology
  • Drug Resistance, Multiple, Bacterial / genetics
  • Humans
  • Klebsiella Infections* / epidemiology
  • Klebsiella Infections* / microbiology
  • Klebsiella Infections* / transmission
  • Klebsiella pneumoniae* / drug effects
  • Klebsiella pneumoniae* / genetics
  • Klebsiella pneumoniae* / isolation & purification
  • Klebsiella pneumoniae* / pathogenicity
  • Microbial Sensitivity Tests*
  • Plasmids* / genetics
  • Virulence / genetics
  • beta-Lactamases* / genetics

Substances

  • Anti-Bacterial Agents
  • beta-Lactamases
  • beta-lactamase CTX-M-15
  • Carbapenems