VESTIBULAR IMPLANT STIMULATION PAUSE DETECTION THRESHOLDS: IMPLICATIONS FOR DESIGN OF BATTERY DEPLETION ALERTS

Proc Des Med Devices Conf. 2023 Apr:2023:V001T08A001. doi: 10.1115/dmd2023-8085. Epub 2023 Jun 4.

Abstract

Vestibular implants (VI) modulate the rate and amplitude of charge-balanced current pulses to encode head angular velocity or acceleration. When the battery of a VI becomes depleted, stimulation interruptions can cause vertigo. To avoid this, VIs can use alert signals such as vibration and beeping to remind the user to replace the battery. However, in distracting and noisy environments typical of activities of daily life, some patients may fail to hear or feel those alerts, so a physiological signal can be used as an alternate channel for signaling battery depletion. Pauses in the stimulation waveform can be delivered for this purpose, with the length of the pause long enough to be detected reliably by the patient but not so long as to induce dizziness or a vertigo attack. As a guide for the design of a physiologic battery depletion alert system, this study reports the ability of nine long-term, continuous VI users to detect stimulation pauses of various durations. We also show the effect of distraction on patients' detection thresholds and response latencies for detected events.

Keywords: Vestibular implant; alert; electrical stimulation; perception; prosthesis; psychometrics; psychophysics.