The adsorbed nanobubbles inside the nanochannels can cause fluid transport blockages, which will obviously degrade the nanodevice performance and reduce the lifetime. However, due to small-scale effects, the removal of nanobubbles is a huge challenge at the nanoscale. Herein, molecular dynamics simulations are carried out to study the effect of the electrostatic field on underwater nitrogen nanobubbles confined in nanochannels. It is found that the nanobubbles will collapse under an appropriate electrostatic field, thereby unblocking the transport of water in the nanochannels. The formation of ordered water structures induced by electrostatic fields plays an important role in the removal of nanobubbles from the nanochannels. Our findings provide a convenient, controllable, and remote way to address the blockage problem of nanobubbles in nanochannels, which may have potential applications in improving the performance of fuel cells.