Sweat-based stress screening with gas chromatography-ion mobility spectrometry and electronic nose

Anal Chim Acta. 2024 Sep 1:1320:343029. doi: 10.1016/j.aca.2024.343029. Epub 2024 Jul 26.

Abstract

Background: Diagnosis of stress generally involves uses of questionnaires which can provide biased results. The more reliable approach relies on observation of individual symptoms by psychiatrists which is time consuming and could not be applicable for massive scale screening tests. This research established alternative approaches with gas chromatography-ion mobility spectrometry (GC-IMS) and electronic nose (e-nose) to perform fast stress screening based on fingerprinting of highly volatile compounds in headspaces of sweat. The investigated samples were obtained from 154 female nurse volunteers who also provided the data of questionnaire-based mental health scores with the high stress cases confirmed by psychiatrists.

Results: The interviews by psychiatrists revealed 14 volunteers with high stress. Their axillary sweat samples and that from 32 nurses with low/moderate stress (controls) were collected onto cotton rods and analysed with GC-IMS. The possible marker peaks were selected based on the accuracy data. They were tentatively identified as ammonia, diethyl ether, methanol, octane, pentane, acetone and dimethylamine which could involve different endogenous mechanisms or the relationships with the local microbiomes. The data were further analysed using partial least squares discriminant analysis with the receiver operating characteristic curves showing the optimum accuracy, sensitivity and selectivity of 87%, 86% and 88%, respectively. Providing that the samples were obtained from the nurses without deodorant uses, the high stress cases could be screened using e-nose sensors with the accuracy of 89%. The sensor responses could be correlated with the marker peak area data in GC-IMS with the coefficients ranging from -0.70 to 0.80.

Significance: This represents the first investigation of highly volatile compound markers in sweat for high stress screening. The established methods were simple, reliable, rapid and non-invasive, which could be further adapted into the portable platform of e-nose sensors with the practical application to perform the screening tests for nurses in Phra Nakorn Si Ayutthaya hospital, Thailand.

MeSH terms

  • Adult
  • Electronic Nose*
  • Female
  • Gas Chromatography-Mass Spectrometry
  • Humans
  • Ion Mobility Spectrometry* / methods
  • Middle Aged
  • Stress, Psychological / diagnosis
  • Sweat* / chemistry
  • Volatile Organic Compounds / analysis

Substances

  • Volatile Organic Compounds