DNA Hyper-methylation Associated With Schizophrenia May Lead to Increased Levels of Autoantibodies

Schizophr Bull Open. 2022 Nov 9;5(1):sgac047. doi: 10.1093/schizbullopen/sgac047. eCollection 2024 Jan.

Abstract

Background and hypothesis: Environmental stressors may influence immune surveillance in B lymphocytes and stimulate autoimmune responses via epigenetic DNA methylation modifications in schizophrenia (SCZ).

Study design: A total of 2722, Chinese Han origin subjects were recruited in this study (2005-2011), which included a discovery follow-up cohort with 40 remitters of SCZ (RSCZ), 40 nonremitters of SCZ (NRSCZ), and 40 controls (CTL), and a replication follow-up cohort (64 RSCZ, 16 NRSCZ, and 84 CTL), as well as a case-control validation cohort (1230 SCZ and 1208 CTL). Genomic DNA methylation, target gene mRNA transcripts, and plasma autoantibody levels were measured across cohorts.

Study results: We found extensive differences in global DNA methylation profiles between RSCZ and NRSCZ groups, wherein differential methylation sites (DMS) were enriched with immune cell maturation and activation in the RSCZ group. Out of 2722 participants, the foremost DMS cg14341177 was hyper-methylated in the SCZ group and it inhibited the alternative splicing of its target gene BICD2 and may have increased its autoantigen exposure, leading to an increase in plasma anti-BICD2 IgG antibody levels. The levels of cg14341177 methylation and anti-BICD2 IgG decreased significantly in RSCZ endpoint samples but not in NRSCZ endpoint samples. There are strong positive correlations between cg14341177 methylation, anti-BICD2 IgG, and positive and negative syndrome scale (PANSS) scores in the RSCZ groups, but not in the NRSCZ groups.

Conclusions: These data suggest that abnormal DNA methylation could affect autoreactive responses in SCZ, and that cg14341177 methylation and anti-BICD2 IgG levels may potentially serve as useful biomarkers.

Keywords: DNA methylation; autoantibody; biomarkers; schizophrenia; state-dependent.