Multifunctional Nanomaterials Mediate Cholesterol Depletion for Cancer Treatment

Angew Chem Int Ed Engl. 2024 Nov 11;63(46):e202412844. doi: 10.1002/anie.202412844. Epub 2024 Oct 4.

Abstract

Cholesterol is an essential membrane component, and the metabolites from cholesterol play important biological functions to intricately support cancer progression and dampen immune responses. Preclinical and clinical studies have demonstrated the role of cholesterol metabolism regulation on inhibiting tumor growth, remodeling the immunosuppressive tumor microenvironment (TME), and enhancing anti-tumor immunity. In this minireview, we discuss complex cholesterol metabolism in tumors, its important role in cancer progression, and its influences on immune cells in the TME. We provide an overview of recent advances in cancer treatment through regulating cholesterol metabolism. We discuss the design of cholesterol-altering multifunctional nanomaterials to regulate oxidative stress, modulate immune checkpoints, manipulate mechanical stress responses, and alter cholesterol metabolic pathways. Additionally, we examine the interactions between cholesterol metabolism regulation and established cancer treatments with the aim of identifying efficient strategies to disrupt cholesterol metabolism and synergistic combination therapies for effective cancer treatment.

Keywords: cholesterol; immune checkpoints; immune response; nanomaterials; tumor microenvironment; tumor therapy.

Publication types

  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Cholesterol* / metabolism
  • Humans
  • Nanostructures* / chemistry
  • Neoplasms* / drug therapy
  • Neoplasms* / metabolism
  • Neoplasms* / pathology
  • Tumor Microenvironment / drug effects

Substances

  • Cholesterol
  • Antineoplastic Agents