To achieve high power conversion efficiency in perovskite/silicon tandem solar cells, it is necessary to develop a promising wide-bandgap perovskite absorber and processing techniques in relevance. To date, the performance of devices based on wide-bandgap perovskite is still limited mainly by carrier recombination at their electron extraction interface. Here, we demonstrate assembling a binary two-dimensional perovskite by both alternating-cation-interlayer phase and Ruddlesden-Popper phase to passivate perovskite/C60 interface. The binary two-dimensional strategy takes effects not only at the interface but also in the bulk, which enables efficient charge transport in a wide-bandgap perovskite solar cell with a stabilized efficiency of 20.79% (1 cm2). Based on this absorber, a monolithic perovskite/silicon tandem solar cell is fabricated with a steady-state efficiency of 30.65% assessed by a third party. Moreover, the tandem devices retain 96% of their initial efficiency after 527 h of operation under full spectral continuous illumination, and 98% after 1000 h of damp-heat testing (85 °C with 85% relative humidity).
© 2024. The Author(s).