An Automated Machine Learning-Based Quantitative Multiparametric Approach for Mitral Regurgitation Severity Grading

JACC Cardiovasc Imaging. 2025 Jan;18(1):1-12. doi: 10.1016/j.jcmg.2024.06.011. Epub 2024 Aug 14.

Abstract

Background: Considering the high prevalence of mitral regurgitation (MR) and the highly subjective, variable MR severity reporting, an automated tool that could screen patients for clinically significant MR (≥ moderate) would streamline the diagnostic/therapeutic pathways and ultimately improve patient outcomes.

Objectives: The authors aimed to develop and validate a fully automated machine learning (ML)-based echocardiography workflow for grading MR severity.

Methods: ML algorithms were trained on echocardiograms from 2 observational cohorts and validated in patients from 2 additional independent studies. Multiparametric echocardiography core laboratory MR assessment served as ground truth. The machine was trained to measure 16 MR-related parameters. Multiple ML models were developed to find the optimal parameters and preferred ML model for MR severity grading.

Results: The preferred ML model used 9 parameters. Image analysis was feasible in 99.3% of cases and took 80 ± 5 seconds per case. The accuracy for grading MR severity (none to severe) was 0.80, and for significant (moderate or severe) vs nonsignificant MR was 0.97 with a sensitivity of 0.96 and specificity of 0.98. The model performed similarly in cases of eccentric and central MR. Patients graded as having severe MR had higher 1-year mortality (adjusted HR: 5.20 [95% CI: 1.24-21.9]; P = 0.025 compared with mild).

Conclusions: An automated multiparametric ML model for grading MR severity is feasible, fast, highly accurate, and predicts 1-year mortality. Its implementation in clinical practice could improve patient care by facilitating referral to specialized clinics and access to evidence-based therapies while improving quality and efficiency in the echocardiography laboratory.

Keywords: artificial intelligence; continuous wave Doppler density; echocardiography; machine learning; mitral regurgitation.

Publication types

  • Validation Study
  • Observational Study
  • Multicenter Study

MeSH terms

  • Aged
  • Automation*
  • Feasibility Studies
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted*
  • Machine Learning*
  • Male
  • Middle Aged
  • Mitral Valve Insufficiency* / diagnostic imaging
  • Mitral Valve Insufficiency* / mortality
  • Mitral Valve Insufficiency* / physiopathology
  • Mitral Valve* / diagnostic imaging
  • Mitral Valve* / physiopathology
  • Predictive Value of Tests*
  • Prognosis
  • Reproducibility of Results
  • Severity of Illness Index*
  • Workflow*