Adequate primary stability is a pre-requisite for the osseointegration and long-term success of dental implants. Primary stability depends essentially on the bone mechanical integrity at the implantation site. Clinically, a qualitative evaluation can be made on medical images, but finite element (FE) simulations can assess the primary stability of a bone-implant construct quantitatively based on high-resolution CT images. However, FE models lack experimental validation on clinically relevant bone anatomy. The aim of this study is to validate such an FE model on human jawbones. Forty-seven bone biopsies were extracted from human cadaveric jawbones. Dental implants of two sizes (Ø3.5 mm and Ø4.0 mm) were inserted and the constructs were subjected to a quasi-static bending-compression loading protocol. Those mechanical tests were replicated with sample-specific non-linear homogenized FE models. Bone was modeled with an elastoplastic constitutive law that included damage. Density-based material properties were mapped based on μCT images of the bone samples. The experimental ultimate load was better predicted by FE (R2 = 0.83) than by peri-implant bone density (R2 = 0.54). Unlike bone density, the simulations were also able to capture the effect of implant diameter. The primary stability of a dental implant in human jawbones can be predicted quantitatively with FE simulations. This method may be used for improving the design and insertion protocols of dental implants.
Keywords: Dental implant; Ex vivo testing; Finite element analysis; Micro-CT; Primary stability.
Copyright © 2024. Published by Elsevier Ltd.