In rubber hand illusion, visual information affects tactile information, whereas in the mirror box illusion, visual information has the opposite effect. However, its underlying mechanisms are not fully understood. As one of the reasons, non-invasive neuroimaging techniques, such as functional magnetic resonance, positron emission tomography, and electroencephalography, often fail to detect complex and fragile responses in the sensory-motor cortex. Using near-infrared spectroscopy (NIRS), we examined neural activity during tactile tracing on a sine-shaped acrylic board to investigate the effects of (1) visual information and (2) the spatial frequency of the sine shape on brain activity. We used spatial frequencies of 2-3 and 20-30 Hz as low- and high-tactile stimuli, respectively. Two types of experiments, with and without an acrylic board, were conducted. Participants performed the tracing tasks with their index finger at 1 Hz of temporal frequency of a 200 mm length of the acrylic board as main tasks and only space moving without touching as a control task. We show effect of visual information on neural activation, including not only activation intensity but also activation patterns.•Testing of mutual effects of vision and haptics.•Testing of sensory-motor paradox using NIRS.•A high NIRS sensitivity to stimulus-induced hemodynamic change.
Keywords: Motor cortex; Near-infrared spectroscopy for detecting neural activity during tactile stimulation; Neurorehabilitation; Non-invasive neuroimaging; Sensory-motor paradox; Somatosensory cortex.
© 2024 The Author(s).