Grasslands globally deliver many ecosystem services, including water management to alleviate flood risk reduction. Two replicated field experiments were conducted to study how agricultural forage species with diverse rooting systems, sown as single species, affected rooting, soil structure and earthworm populations, and consequently water infiltration to understand how they each might influence flood risk from grasslands. Experiment One showed soils under red clover (Trifolium pratense), white clover (Trifolium repens) and chicory (Cichorium intybus) had higher infiltration rates three years after establishment, compared to perennial ryegrass (Lolium perenne). Higher red clover and chicory root biomass or increased earthworm abundance under white clover may have caused these effects. Experiment Two monitored infiltration at intervals over several years post establishment to understand the timeframe for changes in rates; plantain (Plantago lanceolata) was sown as an additional forage. Infiltration declined post establishment, the timing and extent of decline varying with forages; forage effects were significant after 27 months (P < 0.05). Infiltration rates were higher under red and white clover compared to ryegrass, with chicory and plantain intermediate (P < 0.05). Forages again differed in likely mechanisms delivering higher water infiltration, notably between the two clover species. White clover had higher earthworm biomass (P < 0.05), whereas red clover had a higher average root diameter compared to the other forages (P < 0.05). Drivers of intermediate benefits of chicory and plantain also differed: chicory had higher earthworm abundance (month 38) compared to plantain, which had higher average root diameter compared to ryegrass (month 41); 30 months post-establishment soil bulk density was lower under both forages compared to ryegrass and red clover, with white clover intermediate (P < 0.05); bulk density and penetration resistance did not relate to infiltration. Findings demonstrate that a shift from perennial ryegrass-dominated pastures to swards with more contrasting forages provides an ecohydrological approach to mitigating flood risk and climate adaptation.
Keywords: Climate change resilience; Clovers; Earthworms; Forbs; Roots.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.