Using Physiological Biomarkers to Optimize Management of TBI in Austere Environments

Mil Med. 2024 Aug 19;189(Suppl 3):671-676. doi: 10.1093/milmed/usae223.

Abstract

Introduction: Multimodal monitoring is the use of data from multiple physiological sensors combined in a way to provide individualized patient management. It is becoming commonplace in the civilian care of traumatic brain-injured patients. We hypothesized we could bring the technology to the battlefield using a noninvasive sensor suite and an artificial intelligence-based patient management guidance system.

Methods: Working with military medical personnel, we gathered requirements for a hand-held system that would adapt to the rapidly evolving field of neurocritical care. To select the optimal sensors, we developed a method to evaluate both the value of the sensor's measurement in managing brain injury and the burden to deploy that sensor in the battlefield. We called this the Value-Burden Analysis which resulted in a score weighted by the Role of Care. The Value was assessed using 7 criteria, 1 of which was the clinical value as assessed by a consensus of clinicians. The Burden was assessed using 16 factors such as size, weight, and ease of use. We evaluated and scored 17 sensors to test the assessment methodology. In addition, we developed a design for the guidance system, built a prototype, and tested the feasibility.

Results: The resulting architecture of the system was modular, requiring the development of an interoperable description of each component including sensors, guideline steps, medications, analytics, resources, and the context of care. A Knowledge Base was created to describe the interactions of the modules. A prototype test set-up demonstrated the feasibility of the system in that simulated physiological inputs would mimic the guidance provided by the current Clinical Practice Guidelines for Traumatic Brain Injury in Prolonged Care (CPG ID:63). The Value-Burden analysis yielded a ranking of sensors as well as sensor metadata useful in the Knowledge Base.

Conclusion: We developed a design and tested the feasibility of a system that would allow the use of physiological biomarkers as a management tool in forward care. A key feature is the modular design that allows the system to adapt to changes in sensors, resources, and context as well as to updates in guidelines as they are developed. Continued work consists of further validation of the concept with simulated scenarios.

MeSH terms

  • Biomarkers* / analysis
  • Brain Injuries, Traumatic* / diagnosis
  • Brain Injuries, Traumatic* / therapy
  • Humans
  • Military Personnel / statistics & numerical data
  • Monitoring, Physiologic / instrumentation
  • Monitoring, Physiologic / methods
  • Monitoring, Physiologic / standards
  • Resource-Limited Settings*

Substances

  • Biomarkers