Liquid Marbles are liquid droplets encapsulated by hydrophobic powder particles; due to their non-wetting nature, they allow to manipulate liquids efficiently. Literature highlighted their potential to be employed as micro-reactors, micro-containers for growing micro-organisms and cells, micro-fluidics devices, and have also been used in the framework of unconventional computing. In this work, we discuss a theoretical implementation of all required components to define a multi-cycle datapath based on Liquid Marbles. Then, we consider issues related to scalability, by discussing how the circuits can be expanded with the growth of the inputs, and also how they can be modified to overcome the issues related to the growing time and space complexity.
Copyright: © 2024 Erba et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.