Directional Construction of Low-Coordination Fe-N3 Coupled with Intrinsic Carbon Defects for High-Efficiency Oxygen Reduction

ACS Nano. 2024 Sep 3;18(35):24505-24514. doi: 10.1021/acsnano.4c08695. Epub 2024 Aug 21.

Abstract

Regulating the coordination environment of Fe-Nx sites is an efficient but challenging approach for promoting the intrinsic catalytic activity of single-atom Fe/N-codoped carbon (Fe-N-C) toward the oxygen reduction reaction (ORR). Herein, low-coordination Fe-N3 sites coupled with carbon vacancies (Fe-N3/CV) are directionally constructed in Fe-N-C via pyrolysis of a metal-organic framework (MOF) precursor with N3-Zn-O-Fe moieties, which are delicately prefabricated by chemically anchoring Fe3+ onto a H2O-etching induced linker-missing Zn-N3 site in the MOF precursor. The optimized Fe-N-C with the Fe-N3/CV sites displays a high ORR half-wave potential of 0.92 V (vs RHE), which is attributed to the optimized electronic structure and binding strengths of the active Fe center toward the ORR intermediates stemming from the synergy of the asymmetric configuration of Fe-N3 as well as the adjacent carbon vacancies. This work could be enlightening for the design and construction of high-activity coupling sites in metal and nitrogen-codoped carbon catalysts.

Keywords: ORR; coupling site; electrocatalysis; intrinsic carbon defect; metal−nitrogen codoped carbon.