Nanostructured Ferecrystal Intergrowths with TaSe2 Unveiled High Thermoelectric Performance in n-Type SnSe

J Am Chem Soc. 2024 Sep 4;146(35):24716-24723. doi: 10.1021/jacs.4c09943. Epub 2024 Aug 21.

Abstract

Ferecrystals, a distinctive class of misfit layered compounds, hold significant promise in manipulating the phonon transport owing to their two-dimensional (2D) natural superlattice-type structure and turbostratic (rotational) disorder present between the constituent layers. Integrating these 2D intergrowth structures as nanodomains embedded in a bulk thermoelectric matrix is a formidable challenge in synthetic chemistry, yet offers groundbreaking opportunities for efficient thermoelectrics. Here, we have achieved an exceptionally high thermoelectric figure of merit, zT ∼ 2.2, at 823 K in n-type Ta and Br-codoped SnSe, by successfully incorporating [(SnSe)1.15]7(TaSe2)1 ferecrystals with [110] SnSe//[100] TaSe2 orientation, as nanostructures with modulations in few nm in bulk SnSe solid-state matrix. While the presence of ferecrystal nanostructures induces strong scattering of heat-carrying phonons resulting in an ultralow lattice thermal conductivity (κL) of ∼0.18 W m-1 K-1 at 773 K, the Ta and Br codoping strategy increases the concentration of n-type charge carriers for enhanced electrical conductivity. Our approach provides a new pathway for damping the phonon transport and enhancing the thermoelectric performance in 2D layered materials.