Transcriptional Isoforms of NAD+ kinase regulate oxidative stress resistance and melanoma metastasis

Redox Biol. 2024 Oct:76:103289. doi: 10.1016/j.redox.2024.103289. Epub 2024 Jul 28.

Abstract

Metastasizing cancer cells encounter a multitude of stresses throughout the metastatic cascade. Oxidative stress is known to be a major barrier for metastatic colonization, such that metastasizing cancer cells must rewire their metabolic pathways to increase their antioxidant capacity. NADPH is essential for regeneration of cellular antioxidants and several NADPH-regenerating pathways have been shown to play a role in metastasis. We have found that metastatic melanoma cells have increased levels of both NADPH and NADP+ suggesting increased de novo biosynthesis of NADP+. De novo biosynthesis of NADP+ occurs through a single enzymatic reaction catalyzed by NAD+ kinase (NADK). Here we show that different NADK isoforms are differentially expressed in metastatic melanoma cells, with Isoform 3 being specifically upregulated in metastasis. We find that Isoform 3 is more potent in expanding the NADP(H) pools, increasing oxidative stress resistance and promoting metastatic colonization compared to Isoform 1. We have found that Isoform 3 is transcriptionally upregulated by oxidative stress through the action of NRF2. Together, our work presents a previously uncharacterized role of NADK isoforms in oxidative stress resistance and metastasis and suggests that NADK Isoform 3 is a potential therapeutic target in metastatic disease.

Keywords: Antioxidants; Metastasis; NADK; NADP(+); Oxidative stress.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Isoenzymes* / genetics
  • Isoenzymes* / metabolism
  • Melanoma* / genetics
  • Melanoma* / metabolism
  • Melanoma* / pathology
  • Mice
  • NADP / metabolism
  • NF-E2-Related Factor 2* / genetics
  • NF-E2-Related Factor 2* / metabolism
  • Neoplasm Metastasis*
  • Oxidative Stress*
  • Phosphotransferases (Alcohol Group Acceptor)* / genetics
  • Phosphotransferases (Alcohol Group Acceptor)* / metabolism

Substances

  • Isoenzymes
  • NF-E2-Related Factor 2
  • NAD kinase
  • Phosphotransferases (Alcohol Group Acceptor)
  • NADP