[Characteristics of Soil Selenium-cadmium Migration and Accumulation and Its Bioeffectiveness in Typical Geological High Background Area]

Huan Jing Ke Xue. 2024 Aug 8;45(8):4860-4869. doi: 10.13227/j.hjkx.202309030.
[Article in Chinese]

Abstract

The prevalence of selenium-cadmium (Se-Cd) symbiosis in soils of geologically high background areas directly affects the safe utilization of Se-rich land resources. To investigate the migration and accumulation characteristics and bio-effectiveness of Se-Cd in the soil-crop system in typical geological high background areas of Southwest China and to realize the safe use of natural Se-rich land resources in geological high background areas, we collected 84 samples of agricultural crops (maize) and their supporting root systems and analyzed the Se-Cd content and physicochemical properties. Se-Cd accumulation characteristics, influencing factors, and bio-effectiveness of the soil-crop system were evaluated using geostatistics, bioenrichment factors, and geographic detectors. The results showed that the Se-Cd content in the study area was significantly higher than the background value of the soil in the whole country and in Yunnan Province. Influenced by the geological background, secondary enrichment in the process of soil formation, and agricultural activities, the accumulation and enrichment characteristics of Se in the root soil varied from no enrichment to slightly enriched, and the occurrence form was dominated by the residue state. The accumulation index of soil Cd was mainly in the medium pollution level, and the occurrence form was mainly in the residual state and the combined state of iron and manganese. The Se-enrichment rate of crop seeds reached 98.8% (DB 50/T 524-2013 standard), and the average value of bioconcentration factor was 5.8%. The exceeding rate of Cd content in crop seeds was only 1.19% (GB 2762-2022 standard), and the average value of Cd bioconcentration factor was 2.11%, so the ecological risk of heavy metal Cd in crop seeds was relatively low. In the Se-Cd symbiosis area under geological background, the weak alkaline environment of the soil could effectively reduce the bioavailability of Cd in crop seeds, and the Se-rich soil could inhibit the uptake of Cd by the crops to a certain extent. Correlation analysis showed that the migration and accumulation of Se and Cd from soil to crop seeds in the soil-crop system were affected by the elemental accumulation pattern and the physical and chemical properties (pH) of the soil, and at the same time, there was a certain synergistic-antagonistic effect between Se and Cd in the soil-crop system. Correlation analysis showed that the migration and accumulation of Se and Cd from soil to crop seeds in the soil-crop system was influenced by the occurrence of elements, soil physicochemical properties (pH), and other factors, and there was also a certain synergistic-antagonistic interaction between Se and Cd in the soil-crop system.

Keywords: antagonism; bioeffectiveness; geological high background; selenium-cadmium(Se-Cd); soil-crop system.

Publication types

  • English Abstract