Regulated and adaptive in vivo insulin secretion from islets only containing β-cells

Nat Metab. 2024 Sep;6(9):1791-1806. doi: 10.1038/s42255-024-01114-8. Epub 2024 Aug 21.

Abstract

Insulin-producing β-cells in pancreatic islets are regulated by systemic cues and, locally, by adjacent islet hormone-producing 'non-β-cells' (namely α-cells, δ-cells and γ-cells). Yet whether the non-β-cells are required for accurate insulin secretion is unclear. Here, we studied mice in which adult islets are exclusively composed of β-cells and human pseudoislets containing only primary β-cells. Mice lacking non-β-cells had optimal blood glucose regulation, enhanced glucose tolerance, insulin sensitivity and restricted body weight gain under a high-fat diet. The insulin secretion dynamics in islets composed of only β-cells was comparable to that in intact islets. Similarly, human β-cell pseudoislets retained the glucose-regulated mitochondrial respiration, insulin secretion and exendin-4 responses of entire islets. The findings indicate that non-β-cells are dispensable for blood glucose homeostasis and β-cell function. These results support efforts aimed at developing diabetes treatments by generating β-like clusters devoid of non-β-cells, such as from pluripotent stem cells differentiated in vitro or by reprograming non-β-cells into insulin producers in situ.

MeSH terms

  • Animals
  • Blood Glucose / metabolism
  • Diet, High-Fat
  • Humans
  • Insulin Resistance
  • Insulin Secretion*
  • Insulin* / metabolism
  • Insulin-Secreting Cells* / metabolism
  • Islets of Langerhans* / metabolism
  • Mice

Substances

  • Insulin
  • Blood Glucose