Spin-Coupled Electron Densities of Iron-Sulfur Cluster Imaged by In Situ Serial Laue Diffraction

Chem. 2024 Jul 11;10(7):2103-2130. doi: 10.1016/j.chempr.2024.02.019.

Abstract

Iron-sulfur clusters are inorganic cofactors found in many proteins involved in fundamental biological processes. The prokaryotic DNA repair photolyase PhrB carries a four-iron-four-sulfur cluster ([4Fe4S]) in addition to the catalytic flavin adenine dinucleotide (FAD) and a second cofactor ribolumazine. Our recent study suggested that the [4Fe4S] cluster functions as an electron cache to coordinate two interdependent photoreactions of the FAD and ribolumazine. Here we report the crystallography observations of light-induced responses in PhrB using the cryo-trapping method and in situ serial Laue diffraction at room temperature. We capture strong signals that depict electron density changes arising from quantized electronic movements in the [4Fe4S] cluster. Our data reveal the mixed valence layers of the [4Fe4S] cluster due to spin coupling and their dynamic responses to light-induced redox changes. The quantum effects imaged by decomposition of electron density changes have shed light on the emerging roles of metal clusters in proteins.

Keywords: DNA photolyase; dynamic crystallography; metalloprotein; quantum crystallography.