Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming

Am J Physiol Endocrinol Metab. 2024 Oct 1;327(4):E478-E497. doi: 10.1152/ajpendo.00140.2024. Epub 2024 Aug 22.

Abstract

The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of "pro-inflammatory" n6- to "anti-inflammatory" n3-FAs has grown dramatically due to the greater prevalence of n6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.

Keywords: adipose tissue macrophage; early-life metabolic programming; obesity; omega-3 fatty acid; omega-6 fatty acid.

Publication types

  • Review

MeSH terms

  • Adipose Tissue* / metabolism
  • Animals
  • Female
  • Humans
  • Macrophages* / metabolism
  • Metabolic Reprogramming
  • Obesity / metabolism
  • Pregnancy
  • Prenatal Exposure Delayed Effects / metabolism