In the present study, green synthetic pathway was adapted to synthesize CuO-ZnO bimetallic nanoparticles (BNPs) using Eryngium foetidum leaf extract and their anti-cancer activity against MCF7 breast cancer cell lines, anti-microbial activity and in vitro anti-oxidant activity were evaluated. Various bio-active compounds present in leaf extract were responsible for the reduction of CuO-ZnO NPs from respective Cu2+ and Zn2+ metal precursors. In the present study, the involvement of bio-active compounds present in E. foetidum extract before and after green synthesis of BNPs were evaluated for the first time. Rod-shaped and spherical structural morphology of synthesized BNPs were revealed by using FESEM, TEM, and XRD analysis with particle size ranged from 7 to 23 nm with an average size of 16.49 nm. The distribution of Cu and Zn were confirmed by elemental mapping. The green synthesized CuO-ZnO NPs showed significant cytotoxic effect with the inhibition rate 89.20 ± 0.03% at concentration of 500 μg/mL. Again, good antioxidant activity with IC50; 0.253 mg/mL and antimicrobial activity of BNPs were also evaluated with the increasing order of MIC; E. coli (7.81 μg/mL) < B. subtilis (62.5 μg/mL) < S. aureus (31.25 μg/mL).
Keywords: E. foetidum; Anticancer; Antimicrobial; Antioxidant; BNPs; Green synthesis.
© 2024. The Author(s).