Experimental quantum Byzantine agreement on a three-user quantum network with integrated photonics

Sci Adv. 2024 Aug 23;10(34):eadp2877. doi: 10.1126/sciadv.adp2877. Epub 2024 Aug 23.

Abstract

Quantum communication networks are crucial for both secure communication and cryptographic networked tasks. Building quantum communication networks in a scalable and cost-effective way is essential for their widespread adoption. Here, we establish a complete polarization entanglement-based fully connected network, which features an ultrabright integrated Bragg reflection waveguide quantum source, managed by an untrusted service provider, and a streamlined polarization analysis module, which requires only one single-photon detector for each user. We perform a continuously working quantum entanglement distribution and create correlated bit strings between users. Within the framework of one-time universal hashing, we provide the experimental implementation of source-independent quantum digital signatures using imperfect keys circumventing the necessity for private amplification. We further beat the 1/3 fault tolerance bound in the Byzantine agreement, achieving unconditional security without relying on sophisticated techniques. Our results offer an affordable and practical route for addressing consensus challenges within the emerging quantum network landscape.