The metabolomic landscape in myelodysplastic syndrome (MDS) is highly deregulated and presents promising avenues for understanding disease pathogenesis and potential molecular dependencies. Here, we evaluated the transcriptomic landscape in MDS in multiple independent studies focusing more on metabolomics pathways. Identifying molecular dependencies will pave the way for a more precise disease stratification as well as the development of novel personalized treatment strategies. The study adopted a retrospective, cross-sectional approach, utilizing transcriptomic data from multiple MDS studies. The transcriptomic data were then subjected to comprehensive analyses, including differential gene expression, gene enrichment analysis, gene co-expression analysis, protein-protein interaction analyses, and survival analyses. PSAT1 showed a significant upregulation profile in MDS patients. This observed upregulation is correlated with the deregulation of immune-related pathways in MDS samples. This observation suggests a novel role for PSAT1 in immune modulation and potentially in augmenting immune evasion, which may lead to poor prognosis. This was evident in other tumors in the TCGA database, where cancer patients with high PSAT1 expression have a shorter overall survival. This study unveils a novel potential therapeutic avenue in MDS. Identifying the role of the PSAT1 gene sheds light on the disease's intricate biology, highlighting the ongoing cross-talk between metabolism and immune regulation, which may pave the way for innovative treatment modalities.
Copyright: © 2024 Alatawi, Alzamzami. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.