Characterization and Prediction of Organic Anion Transporting Polypeptide 1B Activity in Prostate Cancer Patients on Abiraterone Acetate Using Endogenous Biomarker Coproporphyrin I

Drug Metab Dispos. 2024 Oct 16;52(11):1356-1362. doi: 10.1124/dmd.124.001878.

Abstract

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are important hepatic transporters. We previously identified OATP1B3 being critically implicated in the disposition of abiraterone. We aimed to further investigate the effects of abiraterone on the activities of OATP1B1 and OATP1B3 utilizing a validated endogenous biomarker coproporphyrin I (CP-I). We used OATP1B-transfected cells to characterize the inhibitory potential of abiraterone against OATP1B-mediated uptake of CP-I. Inhibition constant (K i) was incorporated into our physiologically based pharmacokinetic (PBPK) modeling to simulate the systemic exposures of CP-I among cancer populations receiving either our model-informed 500 mg or clinically approved 1000 mg abiraterone acetate (AA) dosage. Simulated data were compared with clinical CP-I concentrations determined among our nine metastatic prostate cancer patients receiving 500 mg AA treatment. Abiraterone inhibited OATP1B3-mediated, but not OATP1B1-mediated, uptake of CP-I in vitro, with an estimated K i of 3.93 μM. Baseline CP-I concentrations were simulated to be 0.81 ± 0.26 ng/ml and determined to be 0.72 ± 0.16 ng/ml among metastatic prostate cancer patients, both of which were higher than those observed for healthy subjects. PBPK simulations revealed an absence of OATP1B3-mediated interaction between abiraterone and CP-I. Our clinical observations confirmed that CP-I concentrations remained comparable to baseline levels up to 12 weeks post 500 mg AA treatment. Using CP-I as an endogenous biomarker, we identified the inhibition of abiraterone on OATP1B3 but not OATP1B1 in vitro, which was predicted and observed to be clinically insignificant. We concluded that the interaction risk between AA and substrates of OATP1Bs is low. SIGNIFICANCE STATEMENT: The authors used the endogenous biomarker coproporphyrin I (CP-I) and identified abiraterone as a moderate inhibitor of organic anion transporting polypeptide (OATP) 1B3 in vitro. Subsequent physiologically based pharmacokinetic (PBPK) simulations and clinical observations suggested an absence of OATP1B-mediated interaction between abiraterone and CP-I among prostate cancer patients. This multipronged study concluded that the interaction risk between abiraterone acetate and substrates of OATP1Bs is low, demonstrating the application of PBPK-CP-I modeling in predicting OATP1B-mediated interaction implicating abiraterone.

MeSH terms

  • Abiraterone Acetate* / pharmacokinetics
  • Aged
  • Biomarkers / metabolism
  • Coproporphyrins* / metabolism
  • Drug Interactions
  • HEK293 Cells
  • Humans
  • Liver-Specific Organic Anion Transporter 1* / metabolism
  • Male
  • Middle Aged
  • Models, Biological
  • Organic Anion Transporters / metabolism
  • Prostatic Neoplasms* / drug therapy
  • Prostatic Neoplasms* / metabolism
  • Solute Carrier Organic Anion Transporter Family Member 1B3* / metabolism

Substances

  • coproporphyrin I
  • Liver-Specific Organic Anion Transporter 1
  • Coproporphyrins
  • SLCO1B1 protein, human
  • Solute Carrier Organic Anion Transporter Family Member 1B3
  • SLCO1B3 protein, human
  • Abiraterone Acetate
  • Biomarkers
  • Organic Anion Transporters