Aims: The aim of this experimental in vivo pilot study was to evaluate the effect of the local delivery of pamidronate within a collagen membrane on the changes in the buccal soft and hard tissue dimensions at the time of immediate implant placement and whether this effect was influenced by the placement of bone substitutes.
Methods: In six beagle dogs, the distal roots of the third and fourth premolars were extracted, and immediate implants were placed. Treatment groups were randomly allocated to each socket: (i) covering the buccal bone with pamidronate-soaked collagen membrane (BP group), (ii) filling the gap defect with synthetic bone substitute (BS group), (iii) filling the gap defect with synthetic bone substitute and covering the buccal bone with pamidronate soaked collagen membrane (BP/BS group), (iv) no treatment (control group). Intraoral scanning was performed immediately after the surgery and at 20 weeks. Histomorphometric and micro-computed tomography (CT) outcomes were evaluated at 20 weeks.
Results: The micro CT analysis demonstrated that the BP group showed no apparent difference in vertical bone level with residual mesial root area, while control group showed significant buccal bone resorption at the implant site. The histomorphometric analysis demonstrated that the vertical bone level of buccal plate was significantly differed between the BP and control group (0.34 ± 0.93 and 1.27 ± 0.56 mm, respectively; p = .041). There was no statistically significant difference in the horizontal ridge width (HRW 1, 2, 3) among the groups. Also, the thickness, height and buccal contours of the soft tissue did not reveal significant changes among the groups.
Conclusion: The local delivery of pamidronate to the outer surface of the buccal wall at the time of immediate implant placement effectively limits buccal bone resorption. The results from the present investigation should be interpreted with caution, as well as its clinical translatability. Further investigation is needed to understand the pamidronate binding and releasing kinetic, as well as the ideal carrier of this drug for its topical application.
Keywords: animal experiment; bisphosphonate; collagen matrix; extraction; histology; immediate implant; preclinical study.
© 2024 The Author(s). Journal of Periodontal Research published by John Wiley & Sons Ltd.