Objectives: This study aims to evaluate the histopathological, biochemical, and functional effects of N-acetylcysteine (NAC), which has antioxidant, anti-inflammatory, and cytoprotective activity, on nerve regeneration in rats with sciatic nerve crush (axonotmesis) injury.
Materials and methods: This study used 16 male Wistar rats, which were divided into treatment and control groups. A standard axonotmesis-type surgical injury was induced in the left sciatic nerves of all rats. The treatment group was given 300 mg/kg of intraperitoneal NAC once a day, whereas the control group received an equal volume of saline solution. After conducting gait analyses, the sciatic functional index (SFI) was used for functional assessment. After gait analysis, all animals were euthanized. Blood samples were examined biochemically. The left sciatic nerves and left triceps surae muscles were examined histopathologically.
Results: Histopathologically, the thickness of the perineurium, axonal degeneration, axonolysis, edema, inflammation, muscle atrophy, and muscle degeneration were all significantly lower in the treatment group (p<0.05). Functionally, SFI-1, SFI-2, and SFI-3 were significantly higher in the treatment group (p<0.05). Biochemically, while the native thiol level and native thiol/total thiol ratio were significantly higher in the treatment group (p<0.003), the disulfide/total thiol ratio was significantly higher in the control group (p<0.005). Significant correlations were found between six of the seven gait parameters and the histopathological findings (p<0.05).
Conclusion: Our study results suggest that NAC may contribute positively to the histopathological and functional recovery of sciatic nerve injury in rats. Furthermore, NAC may have an antioxidant effect on thiol-disulfide homeostasis at a biochemical level. We believe that NAC has a stimulatory effect on healing following nerve injuries.