Glaesserella parasuis is a commensal bacterial organism found in the upper respiratory tract of healthy pigs and the etiological agent of Glässer's disease, which causes severe economic losses in the swine industry. This study aimed to better understand the epidemiological characteristics of this opportunistic pathogen. We investigated the prevalence and distribution of sequence types (STs), serovars, antimicrobial resistance genes (ARGs), and potential virulence factors (VFs) in 764 G. parasuis isolates collected from diseased and healthy pigs from 19 countries, including China. Multilocus sequence typing showed a high degree of variation with 334 STs, of which 93 were not previously recognized. Phylogenetic analysis revealed two major clades distinguished by isolation year, source, country, and serovar. The dominant serovars of G. parasuis were serovars 4 (19.50%), 7 (15.97%), 5/12 (13.87%), and 13 (12.30%). Serovar 7 gradually became one of the dominant serovars in G. parasuis with more VFs and fewer ARGs. Serovars 4 and 5/12 were the most frequent serovars in diseased pigs, whereas serovars 2, 8, and 11 were predominant in healthy pigs. Serovars 7 and 13 possessed more VFs than the other serovars. This study provides novel insights into the global prevalence and epidemiology of G. parasuis and valuable clues for further investigation into the pathogenicity of G. parasuis, which will facilitate the development of effective vaccines.IMPORTANCEGlaesserella parasuis is a clinically important gram-negative opportunistic pathogen, which causes serious financial losses in swine industry on a global scale. No vaccine is known that provides cross-protection against all 15 serovars; furthermore, the correlation between serovar and virulence is largely unknown. This study provides a large number of sequenced strains in 19 countries and compares the genomic diversity of G. parasuis between diseased and healthy pigs. We found a slight change in the dominant serovar of G. parasuis in the world, with serovar 7 gradually emerging as one of the predominant serovars. The observed higher average number of VFs in this particular serovar strain challenges the previously held notion that serovar 7 is non-virulent, indicating a more complex virulence landscape than previously understood. Our analysis indicating that six ARGs [tet(B), sul2, aph(3')-Ia, aph (6)-Id, blaROB-1, and aph(3'')-Ib] are likely to be transmitted horizontally in their entirety. By analyzing VFs, we provided an improved understanding of the virulence of G. parasuis, and these key findings suggest that vaccine development will be challenging.
Keywords: Glaesserella parasuis; antimicrobial resistance gene; sequence type; serovar; virulence factor.