A genome-wide CRISPR screen identifies BRD4 as a regulator of cardiomyocyte differentiation

Nat Cardiovasc Res. 2024 Mar;3(3):317-331. doi: 10.1038/s44161-024-00431-1. Epub 2024 Feb 23.

Abstract

Human induced pluripotent stem cell (hiPSC) to cardiomyocyte (CM) differentiation has reshaped approaches to studying cardiac development and disease. In this study, we employed a genome-wide CRISPR screen in a hiPSC to CM differentiation system and reveal here that BRD4, a member of the bromodomain and extraterminal (BET) family, regulates CM differentiation. Chemical inhibition of BET proteins in mouse embryonic stem cell (mESC)-derived or hiPSC-derived cardiac progenitor cells (CPCs) results in decreased CM differentiation and persistence of cells expressing progenitor markers. In vivo, BRD4 deletion in second heart field (SHF) CPCs results in embryonic or early postnatal lethality, with mutants demonstrating myocardial hypoplasia and an increase in CPCs. Single-cell transcriptomics identified a subpopulation of SHF CPCs that is sensitive to BRD4 loss and associated with attenuated CM lineage-specific gene programs. These results highlight a previously unrecognized role for BRD4 in CM fate determination during development and a heterogenous requirement for BRD4 among SHF CPCs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bromodomain Containing Proteins
  • CRISPR-Cas Systems* / genetics
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism
  • Cell Differentiation* / genetics
  • Cell Lineage / genetics
  • Cells, Cultured
  • Gene Expression Regulation, Developmental
  • Humans
  • Induced Pluripotent Stem Cells* / cytology
  • Induced Pluripotent Stem Cells* / metabolism
  • Mice
  • Mouse Embryonic Stem Cells / cytology
  • Mouse Embryonic Stem Cells / metabolism
  • Myocytes, Cardiac* / cytology
  • Myocytes, Cardiac* / metabolism
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism
  • Single-Cell Analysis
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism

Substances

  • Transcription Factors
  • Brd4 protein, mouse
  • BRD4 protein, human
  • Cell Cycle Proteins
  • Nuclear Proteins
  • Bromodomain Containing Proteins