The four cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators, ivacaftor, lumacaftor, tezacaftor, and elexacaftor, have revolutionised the treatment of CF by direct action on the protein target behind the disease's development. The aim was to develop and validate a quantification method for these CFTR modulators in plasma and breast milk to better understand inter-patient variability in pharmacokinetics and treatment outcome, including the risk of adverse drug reactions. The ability to monitor CFTR modulators in breast milk enables the estimation of the exposure of breastfed infant, with a potential concern for CFTR modulator-induced liver injury. The analysis was performed on a Thermo Vanquish Flex Binary UHPLC system coupled to a high-resolution mass spectrometer (HRMS), Thermo Q Exactive. The analytes were detected using positive electrospray ionisation in full scan mode. After sample preparation by protein precipitation, the supernatant was injected onto the LC system and the analytes were separated using a Zorbax SB-C18 Rapid Res HPLC column (3.5 µm, 4.6 × 75 mm). This is the first published method for CFTR modulators in breast milk. The validated quantification range for ivacaftor is 0.0050-10 µg/mL with a coefficient of variation < 6% and a mean accuracy of 97-106%; for lumacaftor, tezacaftor, and elexacaftor, the validated quantification range is 0.050-100 µg/mL with a coefficient of variation < 8% and a mean accuracy 93-106%. A simple and sensitive quantification method for CFTR modulators has been developed and used for routine analysis of human plasma and breast milk samples since 2022.
Keywords: Breast milk; CFTR modulators; High-resolution mass spectrometry; Human plasma; Therapeutic drug monitoring.
© 2024. The Author(s).