A health equity monitoring framework based on process mining

PLOS Digit Health. 2024 Aug 28;3(8):e0000575. doi: 10.1371/journal.pdig.0000575. eCollection 2024 Aug.

Abstract

In the United States, there is a proposal to link hospital Medicare payments with health equity measures, signaling a need to precisely measure equity in healthcare delivery. Despite significant research demonstrating disparities in health care outcomes and access, there is a noticeable gap in tools available to assess health equity across various health conditions and treatments. The available tools often focus on a single area of patient care, such as medication delivery, but fail to examine the entire health care process. The objective of this study is to propose a process mining framework to provide a comprehensive view of health equity. Using event logs which track all actions during patient care, this method allows us to look at disparities in single and multiple treatment steps, but also in the broader strategy of treatment delivery. We have applied this framework to the management of patients with sepsis in the Intensive Care Unit (ICU), focusing on sex and English language proficiency. We found no significant differences between treatments of male and female patients. However, for patients who don't speak English, there was a notable delay in starting their treatment, even though their illness was just as severe and subsequent treatments were similar. This framework subsumes existing individual approaches to measure health inequities and offers a comprehensive approach to pinpoint and delve into healthcare disparities, providing a valuable tool for research and policy-making aiming at more equitable healthcare.

Grants and funding

JNA is funded by the Alexander von Humboldt-Stiftung (AvH). Furthermore, this work was supported by a fellowship of the German Academic Exchange Service (DAAD). JWG is a 2022 Robert Wood Johnson Foundation Harold Amos Medical Faculty Development Program and declares support from RSNA Health Disparities grant (#EIHD2204), Lacuna Fund (#67), Gordon and Betty Moore Foundation, NIH (NIBIB) MIDRC grant under contracts 75N92020C00008 and 75N92020C00021, and NHLBI Award Number R01HL167811. LAC is funded by the National Institute of Health through R01 EB017205, DS-I Africa U54 TW012043-01 and Bridge2AI OT2OD032701, and the National Science Foundation through ITEST #2148451. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.