Although alcohol and nicotine are two of the most commonly co-used drugs with upwards of 90% of adults with an alcohol use disorder (AUD) in the US also smoking, we don't tend to study alcohol and nicotine use this way. The current studies sought to develop and assess a novel alcohol + nicotine co-access self-administration (SA) model in adult male and female Long-Evans rats. Further, both drugs are implicated in neuroimmune function, albeit in largely opposing ways. Chronic alcohol use increases neuroinflammation via toll-like receptors (TLRs) which in turn increases alcohol intake. By contrast, nicotine produces anti-inflammatory effects, in part, through the monomeric alpha7 receptor (ChRNa7). Following long-term co-access (6 months), rats reliably administered both drugs during daily sessions, however males generally responded for more alcohol and females for nicotine. This was reflected in plasma analysis with translationally relevant intake levels of both alcohol and nicotine, making it invaluable in studying the effects of co-use on behavior and CNS function. Moreover, male rats show sensitivity to alterations in alcohol concentration whereas females show sensitivity to alterations in nicotine concentration. Rats trained on this procedure also developed an anxiogenic phenotype. Finally, we assessed alterations in neuroimmune-related gene expression in the medial prefrontal cortex - prelimbic, (mPFC-PL), nucleus accumbens core (AcbC), and ventral tegmental area (VTA). In the AcbC, where α7 expression was increased and β2 was decreased, markers of pro-inflammatory activity were decreased, despite increases in TLR gene expression suggesting that co-use with nicotine modulates inflammatory state downstream from the receptor level. By contrast, in mPFC-PL where α7 was not increased, both TLRs and downstream proinflammatory markers were increased. Taken together, these findings support that there are brain regional and sex differences with co-use of alcohol + nicotine SA and suggest that targeting nicotinic α7 may represent a novel strategy for treating alcohol + nicotine co-dependence.
Keywords: ChRnB2; DARPP-32; Poly-drug; alpha7; nAChR; polysubstance use.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.