Neurosteroid Levels in GBA Mutated and Non-Mutated Parkinson's Disease: A Possible Factor Influencing Clinical Phenotype?

Biomolecules. 2024 Aug 17;14(8):1022. doi: 10.3390/biom14081022.

Abstract

Neurosteroids are pleiotropic molecules involved in various neurodegenerative diseases with neuroinflammation. We assessed neurosteroids' serum levels in a cohort of Parkinson's Disease (PD) patients with heterozygous glucocerebrosidase (GBA) mutations (GBA-PD) compared with matched cohorts of consecutive non-mutated PD (NM-PD) patients and healthy subjects with (GBA-HC) and without (NM-HC) GBA mutations. A consecutive cohort of GBA-PD was paired for age, sex, disease duration, Hoehn and Yahr stage, and comorbidities with a cohort of consecutive NM-PD. Two cohorts of GBA-HC and HC were also considered. Clinical assessment included the Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and the Montreal Cognitive Assessment (MoCA). Serum samples were processed and analyzed by liquid chromatography coupled with the triple quadrupole mass spectrometry. Twenty-two GBA-PD (males: 11, age: 63.68), 22 NM-PD (males: 11, age: 63.05), 14 GBA-HC (males: 8; age: 49.36), and 15 HC (males: 4; age: 60.60) were studied. Compared to NM-PD, GBA-PD showed more hallucinations and psychosis (p < 0.05, Fisher's exact test) and higher MDS-UPDRS part-II (p < 0.05). Most of the serum neurosteroids were reduced in both GBA-PD and NM-PD compared to the respective control cohorts, except for 5α-dihydroprogesterone. Allopregnanolone was the only neurosteroid significantly lower (p < 0.01, Dunn's test) in NM-PD compared to GBA-PD patients. Only in GBA-PD, allopregnanolone, and pregnanolone levels correlated (Spearman) with a more severe MDS-UPDRS part-III. Allopregnanolone levels also negatively correlated with MoCA scores, and pregnanolone levels correlated with more pronounced bradykinesia. This pilot study provides the first observation of changes in neurosteroid peripheral levels in GBA-PD. The involvement of the observed changes in the development of neuropsychological and motor symptoms of GBA-PD deserves further attention.

Keywords: GBA; Parkinson’s disease; glucocerebrosidase; neurosteroids; psychiatric disorders.

MeSH terms

  • Aged
  • Female
  • Glucosylceramidase* / genetics
  • Humans
  • Male
  • Middle Aged
  • Mutation*
  • Neurosteroids* / blood
  • Parkinson Disease* / blood
  • Parkinson Disease* / genetics
  • Phenotype*

Substances

  • Glucosylceramidase
  • Neurosteroids
  • GBA protein, human

Grants and funding

This research received no external funding.