Olive mill wastewater (OMWW), with its high level of phenolic compounds, simultaneously represents a serious environmental challenge and a great resource with potential nutraceutical activities. To increase the knowledge of OMWW's biological effects, with an aim to developing a food supplement, we performed a chemical characterisation of the extract using the Liquid Chromatography-Quadrupole Time-of-flight spectrometry (LC-QTOF) and an in vitro genotoxicity/antigenotoxicity assessment on HepaRG ™ cells. Chemical analysis revealed that the most abundant phenolic compound was hydroxytyrosol. Biological tests showed that the extract was not cytotoxic at the lowest tested concentrations (from 0.25 to 2.5 mg/mL), unlike the highest concentrations (from 5 to 20 mg/mL). Regarding genotoxic activity, when tested at non-cytotoxic concentrations, the extract did not display any effect. Additionally, the lowest tested OMWW concentrations showed antigenotoxic activity (J-shaped dose-response effect) against a known mutagenic substance, reducing the extent of DNA damage in the co-exposure treatment. The antigenotoxic effect was also obtained in the post-exposure procedure, although only at the extract concentrations of 0.015625 and 0.03125 mg/mL. This behaviour was not confirmed in the pre-exposure protocol. In conclusion, the present study established a maximum non-toxic OMWW extract dose for the HepaRG cell model, smoothing the path for future research.
Keywords: comet assay; olive by-products; phenolic compounds; viability assay.