Marinobufagenin (MBG) is implicated in chronic kidney disease, where it removes Fli1-induced inhibition of the collagen-1. We hypothesized that (i) in nephrectomized rats, aortic fibrosis develops due to elevated plasma MBG and inhibited Fli1, and (ii) that the antibody to MBG reduces collagen-1 and improves vasodilatation. A partial nephrectomy was performed in male Sprague-Dawley rats. Sham-operated animals comprised the control group. At 5 weeks following nephrectomy, rats were administered the vehicle (n = 8), or the anti-MBG antibody (n = 8). Isolated aortic rings were tested for their responsiveness to sodium nitroprusside following endothelin-1-induced constriction. In nephrectomized rats, there was an increase in the intensity of collagen staining in the aortic wall vs. the controls. In antibody-treated rats, the structure of bundles of collagen fibers had ordered organization. Western blots of the aorta had lower levels of Fli1 (arbitrary units, 1 ± 0.05 vs. 0.2 ± 0.01; p < 0.001) and greater collagen-1 (arbitrary units, 1 ± 0.01 vs. 9 ± 0.4; p < 0.001) vs. the control group. Administration of the MBG antibody to rats reversed the effect of the nephrectomy on Fli1 and collagen-1 proteins. Aortic rings pretreated with endothelin-1 exhibited 50% relaxation following the addition of sodium nitroprusside (EC50 = 0.28 μmol/L). The responsiveness of the aortic rings obtained from nephrectomized rats was markedly reduced (EC50 = 3.5 mol/L) compared to the control rings. Treatment of rats with the antibody restored vasorelaxation. Thus, the anti-MBG antibody counteracts the Fli1-collagen-1 system and reduces aortic fibrosis.
Keywords: Fli1; Na/K-ATPase; chronic kidney disease; fibrosis; marinobufagenin; vasorelaxation.