Allergic respiratory diseases such as asthma might be considered multifactorial diseases, having a complex pathogenesis that involves environmental factors and the activation of a large set of immune response pathways and mechanisms. In addition, variations in genetic background seem to play a central role. The method developed for the analysis of the complexities, as association rule mining, nowadays may be applied to different research areas including genetic and biological complexities such as atopic airway diseases to identify complex genetic or biological markers and enlighten new diagnostic and therapeutic targets. A total of 308 allergic patients and 205 controls were typed for 13 single nucleotide polymorphisms (SNPs) of cytokine and receptors genes involved in type 1 and type 2 inflammatory response (IL-4 rs2243250 C/T, IL-4R rs1801275A/G, IL-6 rs1800795 G/C, IL-10 rs1800872 A/C and rs1800896 A/G, IL-10RB rs2834167A/G, IL-13 rs1800925 C/T, IL-18 rs187238G/C, IFNγ rs 24030561A/T and IFNγR2 rs2834213G/A), the rs2228137C/T of CD23 receptor gene and rs577912C/T and rs564481C/T of Klotho genes, using KASPar SNP genotyping method. Clinical and laboratory data of patients were analyzed by formal statistic tools and by a data-mining technique-market basket analysis-selecting a minimum threshold of 90% of rule confidence. Formal statistical analyses show that IL-6 rs1800795GG, IL-10RB rs2834167G positive genotypes, IL-13 rs1800925CC, CD23 rs2228137TT Klotho rs564481TT, might be risk factors for allergy. Applying the association rule methodology, we identify 10 genotype combination patterns associated with susceptibility to allergies. Together these data necessitate being confirmed in further studies, indicating that the heuristic approach might be a straightforward and useful tool to find predictive and diagnostic molecular patterns that might be also considered potential therapeutic targets in allergy.
Keywords: Klotho; airways; allergy; cytokine gene SNPs; heuristic approach; market basket analysis.