A phosphorylation-controlled switch confers cell cycle-dependent protein relocalization

Nat Cell Biol. 2024 Oct;26(10):1804-1816. doi: 10.1038/s41556-024-01495-8. Epub 2024 Aug 29.

Abstract

Tools for acute manipulation of protein localization enable elucidation of spatiotemporally defined functions, but their reliance on exogenous triggers can interfere with cell physiology. This limitation is particularly apparent for studying mitosis, whose highly choreographed events are sensitive to perturbations. Here we exploit the serendipitous discovery of a phosphorylation-controlled, cell cycle-dependent localization change of the adaptor protein PLEKHA5 to develop a system for mitosis-specific protein recruitment to the plasma membrane that requires no exogenous stimulus. Mitosis-enabled anchor-away/recruiter system comprises an engineered, 15 kDa module derived from PLEKHA5 capable of recruiting functional protein cargoes to the plasma membrane during mitosis, either through direct fusion or via GFP-GFP nanobody interaction. Applications of the mitosis-enabled anchor-away/recruiter system include both knock sideways to rapidly extract proteins from their native localizations during mitosis and conditional recruitment of lipid-metabolizing enzymes for mitosis-selective editing of plasma membrane lipid content, without the need for exogenous triggers or perturbative synchronization methods.

MeSH terms

  • Cell Cycle
  • Cell Membrane* / metabolism
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Mitosis*
  • Phosphorylation
  • Protein Transport

Substances

  • Green Fluorescent Proteins