Differential Patterns of Gut and Oral Microbiomes in Hispanic Individuals with Cognitive Impairment

bioRxiv [Preprint]. 2024 Jul 29:2024.07.27.605455. doi: 10.1101/2024.07.27.605455.

Abstract

Alzheimer's disease and related dementias (ADRD) have been associated with alterations in both oral and gut microbiomes. While extensive research has focused on the role of gut dysbiosis in ADRD, the contribution of the oral microbiome remains relatively understudied. Furthermore, the potential synergistic interactions between oral and gut microbiomes in ADRD pathology are largely unexplored. This study aims to evaluate distinct patterns and potential synergistic effects of oral and gut microbiomes in a cohort of predominantly Hispanic individuals with cognitive impairment (CI) and without cognitive impairment (NC). We conducted 16S rRNA gene sequencing on stool and saliva samples from 32 participants (17 CI, 15 NC; 62.5% female, mean age = 70.4 ± 6.2 years) recruited in San Antonio, Texas, USA. Correlation analysis through MaAslin2 assessed the relationship between participants' clinical measurements (e.g., fasting glucose and blood cholesterol) and their gut and saliva microbial contents. Differential abundance analysis evaluated taxa with significant differences between CI and NC groups, and alpha and beta diversity metrics assessed within-sample and group compositional differences. Our analyses revealed no significant differences between NC and CI groups in fasting glucose or blood cholesterol levels. However, a clear association was observed between gut microbiome composition and levels of fasting glucose and blood cholesterol. While alpha and beta diversity metrics showed no significant differences between CI and NC groups, differential abundance analysis revealed an increased presence of oral genera such as Dialister , Fretibacterium , and Mycoplasma in CI participants. Conversely, CI individuals exhibited a decreased abundance of gut genera, including Shuttleworthia , Holdemania , and Subdoligranulum , which are known for their anti-inflammatory properties. No evidence was found for synergistic contributions between oral and gut microbiomes in the context of ADRD. Our findings suggest that similar to the gut microbiome, the oral microbiome undergoes significant modifications as individuals transition from NC to CI. Notably, the identified oral microbes have been previously associated with periodontal diseases and gingivitis. These results underscore the necessity for further investigations with larger sample sizes to validate our findings and elucidate the complex interplay between oral and gut microbiomes in ADRD pathogenesis.

Publication types

  • Preprint