RNA pseudoknots are RNA molecules with specialized three-dimensional structures that play important roles in various biological processes. To understand the functions and mechanisms of pseudoknots, it is essential to elucidate their structures and folding pathways. The most fundamental step in RNA folding is the opening and closing of a base pair. The effect of flexible loops on the base pair in pseudoknots remains unclear. In this work, we use molecular dynamics simulations and Markov state model to study the configurations, thermodynamic and kinetic of single base pair in pseudoknots. We find that the presence of the loop leads to a trap state. In addition, the rate-limiting step for the formation of base pair is the disruption of the trap state, rather than the open state to the closed state, which is quite different from the previous studies on non-pseudoknot RNA. For the thermodynamic parameters in pseudoknots, we find that the entropy difference upon opening the base pair between this simulation and the nearest-neighbor model results from the different entropy of different lengths of loop in solution. The thermodynamic parameters of the stack in pseudoknot are close to the nearest-neighbor parameters. The bases on the loop have different distribution patterns in different states, and the slow transition states of the loop are determined by the orientation of the bases.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.