Bone marrow mesenchymal stem cell (BMSC)-derived exosomes possess therapeutic potential against degenerative diseases. This study aimed to investigate the effects of BMSC-derived exosomes on intervertebral disc degeneration (IVDD) and explore the underlying molecular mechanisms. Through transcriptome sequencing and histological analysis, we observed a significant increase in HIF-1α expression in degenerative nucleus pulposus (NP) tissues. The addition of HIF-1α resulted in elevated expression of inflammatory factors IL-1β and IL-6, higher levels of matrix-degrading enzyme MMP13, and lower expression of aggrecan in NP cells. Co-culturing with BMSCs diminished the expression of HIF-1α, MMP13, IL-1β, and IL-6 in degenerative NP cells induced by overload pressure. miRNA chip analysis and PCR validation revealed that miR-145a-5p was the primary miRNA carried by BMSC-derived exosomes. Overexpression of miR-145a-5p was effective in minimizing the expression of HIF-1α, MMP13, IL-1β, and IL-6 in degenerative NP cells. Luciferase reporter assays confirmed USP31 as the target gene of miR-145a-5p, and the regulation of NP cells by BMSC-derived exosomes via miR-145a-5p was dependent on USP31. In conclusion, BMSC-derived exosomes alleviated IVDD through the miR-145a-5p/USP31/HIF-1α signaling pathway, providing valuable insights into the treatment of IVDD.
Keywords: Bone marrow mesenchymal stem cells; HIF-1α; Intervertebral disc degeneration; Usp31; miR-145a-5p.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.