An efficient improved parrot optimizer for bladder cancer classification

Comput Biol Med. 2024 Oct:181:109080. doi: 10.1016/j.compbiomed.2024.109080. Epub 2024 Aug 30.

Abstract

Bladder Cancer (BC) is a common disease that comes with a high risk of morbidity, death, and expense. Primary risk factors for BC include exposure to carcinogens in the workplace or the environment, particularly tobacco. There are several difficulties, such as the requirement for a qualified expert in BC classification. The Parrot Optimizer (PO), is an optimization method inspired by key behaviors observed in trained Pyrrhura Molinae parrots, but the PO algorithm becomes stuck in sub-regions, has less accuracy, and a high error rate. So, an Improved variant of the PO (IPO) algorithm was developed using a combination of two strategies: (1) Mirror Reflection Learning (MRL) and (2) Bernoulli Maps (BMs). Both strategies improve optimization performance by avoiding local optimums and striking a compromise between convergence speed and solution diversity. The performance of the proposed IPO is evaluated against eight other competitor algorithms in terms of statistical convergence and other metrics according to Friedman's test and Bonferroni-Dunn test on the IEEE Congress on Evolutionary Computation conducted in 2022 (CEC 2022) test suite functions and nine BC datasets from official repositories. The IPO algorithm ranked number one in best fitness and is more optimal than the other eight MH algorithms for CEC 2022 functions. The proposed IPO algorithm was integrated with the Support Vector Machine (SVM) classifier termed (IPO-SVM) approach for bladder cancer classification purposes. Nine BC datasets were then used to confirm the effectiveness of the proposed IPO algorithm. The experiments show that the IPO-SVM approach outperforms eight recently proposed MH algorithms. Using the nine BC datasets, IPO-SVM achieved an Accuracy (ACC) of 84.11%, Sensitivity (SE) of 98.10%, Precision (PPV) of 95.59%, Specificity (SP) of 95.98%, and F-score (F1) of 94.15%. This demonstrates how the proposed IPO approach can help to classify BCs effectively. The open-source codes are available at https://www.mathworks.com/matlabcentral/fileexchange/169846-an-efficient-improved-parrot-optimizer.

Keywords: Bladder Cancer (BC); Meta-Heuristics (MH); Mirror Reflection Learning (MRL); Parrot Optimizer (PO); Support Vector Machine (SVM).

MeSH terms

  • Algorithms*
  • Humans
  • Urinary Bladder Neoplasms* / classification