This study investigated the diet-additive interactions of a Lactobacilli-based probiotic (Pro) and postbiotic (Post) on immune parameters and cecal microbiota composition, with subsequent effects on the metabolome in broilers. A completely randomized block design was employed with 2 diets [standard (SD), and challenge (CD)] and 3 additive conditions (Control, Pro, Post) involving 1,368 one-day-old male Ross 308 broilers equally distributed among 36 pens in a 42 d study. Diets were formulated to contain identical nutrient levels, with CD higher than SD in non-starch polysaccharide content by including rye and barley. Total non-specific serum Ig A, M and G concentrations were determined weekly from d14 to 35. Following vaccination, titres of specific antibodies binding Newcastle disease virus (NDV) and infectious bursal disease virus (IBDV) were measured. Microbiota composition was analyzed by 16S rRNA gene sequencing at d14 and 35, and α- and β-diversity indexes (Observed, Chao1, Bray, Jaccard) were calculated. Cecal short-chain fatty acids and the semi-polar metabolome were determined in the Control SD and all CD groups at d35. At d35, a diet-additive interaction was observed on cecal microbiota composition. Within SD, Pro and Post did not affect operational taxonomic units (OTU) abundance (adjusted-P > 0.05) and diversity indexes (P > 0.05). Within CD, Pro and Post affected the relative abundances of 37 and 44 OTUs, respectively (adjusted-P < 0.05), with Post but not Pro affecting β-diversity indexes (P = 0.041 and 0.064 for Bray and Jaccard, respectively). Within CD, Post increased cecal acetate (21%; P = 0.007) and butyrate (41%; P = 0.002) concentration and affected the concentration of 2 metabolites (adjusted-P < 0.05), while Pro affected 240 metabolites (adjusted-P < 0.05). No diet-additive interactions were observed on serum Ig (P > 0.05), except for IgM at d14 (P = 0.004). Diet composition, but not the additives, affected immune status parameters. The Pro and Post affected cecal microbiota composition only under dietary challenging conditions as previously reported for growth.
Keywords: dietary challenge; immunity; microbiota; postbiotic; probiotic.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.