Cardiovascular diseases persist as the leading cause of death globally and their early detection and prediction remain a major challenge. Artificial intelligence (AI) tools can help meet this challenge as they have considerable potential for early diagnosis and prediction of occurrence of these diseases. Deep neural networks can improve the accuracy of medical image interpretation and their outputs can provide rich information that otherwise would not be detected by cardiologists. With recent advances in transformer models, multimodal AI, and large language models, the ability to integrate electronic health record data with images, genomics, biosensors, and other data has the potential to improve diagnosis and partition patients who are at high risk for primary preventive strategies. Although much emphasis has been placed on AI supporting clinicians, AI can also serve patients and provide immediate help with diagnosis, such as that of arrhythmia, and is being studied for automated self-imaging. Potential risks, such as loss of data privacy or potential diagnostic errors, should be addressed before use in clinical practice. This Series paper explores opportunities and limitations of AI models for cardiovascular medicine, and aims to identify specific barriers to and solutions in the application of AI models, facilitating their integration into health-care systems.
Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.