A first study of meat-borne enterococci from butcher shops: prevalence, virulence characteristics, antibiotic resistance and clonal relationship

Vet Res Commun. 2024 Dec;48(6):3669-3682. doi: 10.1007/s11259-024-10516-8. Epub 2024 Aug 31.

Abstract

IntroductionEnterococcus, which used to be thought of as a harmless commensal living in the digestive tract, has now become a highly resistant and highly contagious pathogen that makes nosocomial infections much more common. This study examined enterococci species and their antibiotic resistance phenotypes and genotypes and virulence gene content in Turkish ground beef samples. Methodology A total of 100 ground beef samples were analyzed between May 2020 and May 2021. The isolated strains were identified via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and confirmed using polymerase chain reaction (PCR) after which they were divided into several species using PCR and tested for antibiotic resistance against 19 antimicrobial agents using the disc diffusion method. The genetic similarity analysis, pulsed-field gel electrophoresis (PFGE) was performed. Results A total of 93 isolates in ground beef were identified, comprised of E. faecalis 72.04%; E. hirae- 11.82%; E. casseliflavous- 7.52%; E. faecium- 5.3%; E. gallinarium- 3.23%. The virulence genes observed in Enterococcus species were distributed as follows: gelE 88.1%, ace 53.7%, efaA 40.8%, asaI 19.3%, esp 6.4%, and cylA 1.07%. A high antibiotic resistance was recorded for tetracycline (43.01%), followed by ampicilin (17.2%), and chloramphenicol (13.9%). 17.2% of Enterococcus isolates were multidrug-resistant. The study determined the high prevalence of antibiotic resistance genes, specifically for tet(L) 10 (10.7%), aac(6')Ie-aph(2")-la 3 (3.2%), and ermB 3 (3.2%). The presence of efflux pump genes were identified in 74.1% of Enterococcus isolates. Genetic characterization of 67 E. faecalis isolates by PFGE revealed 41 pulsed-field gel electrophoresis (PFGE) patterns that were grouped into 15 clusters, which presented more than one strain with 100% similarity. Conclusion Isolates obtained from several areas and butchers had comparable patterns of PFGE, suggesting that the presence of circulating E. faecalis poses a potential public health concern in diverse districts. To mitigate the health hazards associated with the contamination of enterococci from raw to cooked meats, it is necessary to enhance the disinfection of butcheries, promote excellent hand hygiene among butchers, and implement appropriate meat storage and handling methods to prevent bacterial development.

Keywords: Enterococcus spp.; Clonal relatedness; MALDI-TOF MS; Meat; PFGE.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Cattle
  • Drug Resistance, Bacterial
  • Enterococcus* / drug effects
  • Enterococcus* / genetics
  • Enterococcus* / isolation & purification
  • Enterococcus* / pathogenicity
  • Food Microbiology
  • Meat / microbiology
  • Prevalence
  • Red Meat / microbiology
  • Turkey / epidemiology
  • Virulence / genetics

Substances

  • Anti-Bacterial Agents