Soft ionic conductors are widely used in flexible electronics. However, the simultaneous enhancement of their mechanical properties and ionic conductivity remains challenging. This paper reports the successful development of a strong and tough cellulose-based ionic conductor with exceptional mechanical properties and high ionic conductivity by in situ dissolution and reorganization of the fiber matrix of filter paper to create a multiscale structure. The resulting ionic conductor exhibits a fracture strength of 14.13 MPa and a fracture energy of up to 2.84 MJ/m3, exceeding most reported ionic conductors. It also exhibits an impressive ionic conductivity of up to 76.3 mS/cm. Results of experiments on its use in a flexible quasi-solid-state zinc-hybrid supercapacitor show its remarkable features, such as a high capacity of 218 mAh/g, an energy density of 217 Wh/kg, and a power density of 17,520 W/kg. Furthermore, it exhibits excellent temperature resistance, working effectively even at -60 °C. In addition, by incorporating kirigami structures, we fabricated a strain sensor with the cellulose-based ionic conductor with a high gauge factor, as well as a piezoresistive sensor for handwriting recognition and a capacitance pressure sensor for force mapping with wide range and sensitivity. This study opens up new possibilities for fabricating flexible electronics with superior performance using sustainable and renewable resources.
Keywords: All-natural ionic conductor; Cellulose; High ionic conductivity; High sensitivity; Strong and tough.
Copyright © 2024. Published by Elsevier Ltd.