Background: Ultrasensitive detection is crucial for the early warning and intervention of risk factors, ultimately benefiting the environment and human health. Low levels of ochratoxin A (OTA) present a hidden yet significant threat, and rapid detection via high-performing biosensors is therefore essential.
Results: A cascade isothermal amplification aptasensor (CIA-aptasensor) was designed for OTA detection. On the surface of a magnetic bead probe, the OTA level was converted into positively correlated trigger cDNA through its competitive binding with OTA-Apt. The released trigger cDNA activated catalytic hairpin assembly followed by coupling with a hybridization chain reaction to achieve CIA. After adding graphene oxide and SYBR Green I, the background interference was eliminated to specifically obtain OTA-related fluorescence. The ultrasensitive limit of detection was 0.22 pg mL-1, an improvement of 1368-fold over conventional enzyme-linked aptamer sorbent assay by the same OTA-Apt, demonstrating satisfactory reliability and practicability. Thus, the CIA-aptasensor provides an enzyme- and label-free simplified homogeneous system with minimal background interference using isothermal conditions.
Significance: This study provides a polymerase chain reaction-like approach for enhancing the sensitivity and performance of a biosensor, which could be extended for the application of CIA and label-free signaling strategy to other risk factors.
Keywords: Aptasensor; Isothermal amplification; Ochratoxin A; Signaling cascade; Ultrasensitive detection.
Copyright © 2024 Elsevier B.V. All rights reserved.