Brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP) have attracted much attention in the field of intelligent robotics. Traditional SSVEP-based BCI systems mostly use synchronized triggers without identifying whether the user is in the control or non-control state, resulting in a system that lacks autonomous control capability. Therefore, this paper proposed a SSVEP asynchronous state recognition method, which constructs an asynchronous state recognition model by fusing multiple time-frequency domain features of electroencephalographic (EEG) signals and combining with a linear discriminant analysis (LDA) to improve the accuracy of SSVEP asynchronous state recognition. Furthermore, addressing the control needs of disabled individuals in multitasking scenarios, a brain-machine fusion system based on SSVEP-BCI asynchronous cooperative control was developed. This system enabled the collaborative control of wearable manipulator and robotic arm, where the robotic arm acts as a "third hand", offering significant advantages in complex environments. The experimental results showed that using the SSVEP asynchronous control algorithm and brain-computer fusion system proposed in this paper could assist users to complete multitasking cooperative operations. The average accuracy of user intent recognition in online control experiments was 93.0%, which provides a theoretical and practical basis for the practical application of the asynchronous SSVEP-BCI system.
基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)在智能机器人领域的应用备受关注。传统基于SSVEP的BCI系统多采用同步触发方式,没有识别用户是处于控制态还是非控制态,导致系统缺乏自主控制能力。为此,本文提出了一种SSVEP异步状态识别方法,通过融合脑电信号(EEG)的多种时频域特征,结合线性判别分类器构建了异步状态识别模型,提高SSVEP异步状态识别准确率。进一步,针对残障人群在多任务场景下的控制需求,搭建了一种基于SSVEP-BCI异步协同控制的脑机融合系统,实现在复杂场景下可穿戴机械手与机械臂即“第三只手”的协同控制。实验结果表明,运用本文所提出的SSVEP异步控制算法和脑机融合系统,可以辅助用户完成多任务协同操作,在线控制实验中用户意图识别的平均准确率为93.0%,为SSVEP异步脑机接口系统的实际应用提供了理论和实践依据。.
Keywords: Asynchronous brain-computer interface; Augmented reality; Steady-state visual evoked potential; Supernumerary robotic limb.