Luteolin (LN), is an herbal bioactive flavone and exhibits many pharmacological activities. However, the bioavailability of LN is limited due to its inadequate solubility and significant first-pass metabolism. The present study developed transdermal LN-loaded invasomes (IVM) gel to improve the therapeutic efficacy. The LN-IVM was prepared and optimized by 2 3 factorial designs. LN-IVM was characterized for physicochemical parameters. The optimized LN-IVM (LN-IVMopt) was incorporated into HPMC-K4M gel and evaluated for viscosity, spreadability, and irritation. Further LN-IVM gel was evaluated for drug release, ex-vivo permeation, pharmacokinetic and pharmacodynamics study. LN-IVMopt showed 300.8±2.67 nm of VS, 0.258 of PDI, 89.92±1.29% of EE, and a zeta potential of -18.2 mV. LN-IVM exhibited spherical morphology. FTIR and XRD results demonstrated that LN was encapsulated into IVM matrix. The optimized IVM gel (LN-IVMoptG2) exhibited excellent viscosity, spreadability, and sustained release of LN (91.32±2.95% in 24 h). LN-IVMoptG2 exhibited statistically significant (p < 0.05) higher flux (5.79 µg/h/cm2 ) than LN-gel (2.09 µg/h/cm2 ). The apparent permeability coefficient of plain LN gel and LN- IVMoptG was 1.15×10-5 cm/min and 3.22×10-5 cm/min respectively. LN-IVMoptG2 showed no irritation (score 0.0) throughout the study (60 min). The relative bioavailability of LN from LN-IVMopt-G2 (transdermal) was 2.38±0.19 fold as compared to LN-Sus (oral) and 1.81±0.15-fold than plain LN-gel (transdermal). The LN-IVMoptG2 showed a substantial lessening in the paw volume up to 12 h (17.48±1.94% swelling) than plain LN-gel (44.77±2.82% swelling). The finding concluded that the IVM gel is a novel, effective, and safe approach for the delivery of LN transdermally to improve its therapeutic efficacy.
Keywords: ex-vivo permeation; invasomes gel; luteolin; pharmacodynamic study; pharmacokinetic; transdermal delivery.