The purpose of this study was to investigate the potential of discoidal polymeric particles (DPPs) coated with macrophage membranes as a novel drug delivery system. The study aimed to determine whether these coated particles could reduce phagocytosis, and target specific organs, thereby enhancing drug delivery efficacy. In this study, discoidal polymeric particles (DPPs) were synthesized by a top-down fabrication method serving as the core drug delivery platform. The method involved the fusion of macrophage cell membrane vesicles with DPPs, resulting in macrophage membrane coated DPPs. This process aimed to translocate membrane proteins from macrophages onto the DPPs, rendering them structurally and functionally like host cells. The results of this study showed that macrophage membrane coated DPPs exhibited a threefold reduction in phagocytosis compared to bare DPPs. This reduction in phagocytosis indicated the potential of these coated DPPs to evade immune clearance. Time-lapse microscopy further illustrated the distinct interactions of macrophage membrane coated DPPs with immune cells. Biodistribution studies revealed that these coated particles displayed preferential accumulation in the lungs at early time points, followed by sustained accumulation in the liver. In conclusion, this study demonstrated that macrophage membrane coated DPPs represent a unique and promising strategy for drug delivery. These particles can mimic cell surfaces, reduce phagocytosis, and target specific organs. This opens exciting avenues for improving drug delivery efficacy in diverse therapeutic contexts. These findings advance our understanding of nanomedicine's potential in personalized therapies and targeted drug delivery strategies.
Supplementary information: The online version contains supplementary material available at 10.1007/s13534-024-00396-x.
Keywords: Discoidal polymeric particles; Macrophages; Phagocytosis; Top-down fabrication.
© Korean Society of Medical and Biological Engineering 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.