Ultra-wide-angle multispectral narrow-band absorber for infrared spectral reconstruction

iScience. 2024 Apr 8;27(8):109700. doi: 10.1016/j.isci.2024.109700. eCollection 2024 Aug 16.

Abstract

This paper presents the design of an ultra-wide-angle multispectral narrow-band absorber for reconstructing infrared spectra. The absorber offers several advantages, including polarization sensitivity, robustness against structural wear, wide azimuthal angle coverage, high narrow-band absorption, and adjustable working wavelength. To accomplish infrared spectrum reconstruction, an absorber is employed as a spectral sampling channel, eliminating the influence of slits or complex optical splitting elements in spectral imaging technology. Additionally, we propose using a truncation regularization algorithm based on the design matrix singular value ratio, namely IReg, which can enable high-precision spectral reconstruction under largely disturbed environments. The results demonstrate that, even when the number of absorption spectrum curve is reduced to a range of 1/2 to 1/3, high-precision spectral reconstruction is achievable for both flat and high-energy steep mid- and long-infrared spectral targets, while effectively accomplishing data dimension reduction.

Keywords: Natural sciences; Optics; Physics.